Abstract

People strive to make sense of the complex electroencephalography (EEG) data generated by the brain. This study uses a prepared dataset to examine how easily people with alcohol use disorder (AUD) could be distinguished from healthy people. The signals from each electrode are connected to one another and are first represented as a single signal. The signal is then denoised through variation mode decomposition (VMD) during the preprocessing stage. The statistical and deep feature extraction phases are the two subsequent phases. The crucial step in the suggested strategy is to classify data using a combination of these two unique qualities. Deep and statistical feature performance was evaluated independently. Then, using the eigenvectors created by merging all of the collected features, classification was carried out using our DSFC (Deep - Statistical Features Classification) model. Although the classification accuracy rate using only statistical features was 81.2 percent and the classification accuracy rate using only deep learning was 95.71 percent, the classification accuracy rate utilizing hybrid features created using the suggested DSFC technique was 99.2%. Therefore, it can be proven that combining statistical and deep features can produce beneficial results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.