Abstract

Deep and shallow electronic states in undoped and Si-doped ε-Ga2O3 epilayers grown by MOVPE on c-oriented Al2O3 were investigated by cathodoluminescence, optical absorption, photocurrent spectroscopy, transport measurements, and electron-paramagnetic-resonance. Nominally undoped films were highly resistive, with a room temperature resistivity varying in the range 107- 1013 Ωcm depending on the carrier gas used during growth. Films grown with He carrier were generally more resistive than those grown with H2 carrier and exhibited a Fermi level located at about 0.8 eV below the conduction band edge, which tends to shift deeper with temperature. This can tentatively be attributed to the combined action of deep donors (probably carbon impurities and oxygen vacancies) and deep acceptors (Ga vacancies and related complexes), which compensate residual shallow donors. There are strong experimental hints that nitrogen also behaves as deep acceptor.Room temperature resistivity as low as 0.42 Ωcm and electron concentrations around 1018 cm−3 were obtained by silicon doping. Si was confirmed to act as shallow donor with sufficiently high solubility. A variable range hopping conduction was observed in a wide temperature interval in the n-type layers, and compensation by native acceptors also plays a major role on conduction mechanisms. Previous evaluations of curvature and anisotropy of the conduction band are confirmed, which allows for the estimation of the electron effective mass.The present experimental data are discussed considering the theoretical predictions for point defect formation in the ε-polymorph as well as literature data on extrinsic and intrinsic defects in β-Ga2O3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.