Abstract

Ceramics possess high thermal and chemical resistance, low density, and high compressive strength; however, the machining complications imposed by their inherent brittleness limit their range of applications. Laser cutting technology can offer an automated manufacturing technique for machining these brittle materials. In this paper, a laser cutting method, so-called wobbling, was developed for performing deep, high precision, and defect-free laser cutting of industrial grade alumina ceramics. This work explored picosecond laser process parameters such as focal position, linear speed, and wobble amplitude in order to control cut depth and optimize cut quality in terms of kerf width, kerf taper, surface cleanness, while avoiding crack formation. The morphology and cut quality were evaluated using 3D laser scanning microscopy and scanning electron microscopy (SEM). Picosecond laser cutting process parameters were optimized, achieving a maximum material removal rate of ~10 mm3/min. It was shown that the laser cutting process developed via these experiments represents an effective and efficient manufacturing tool that can be incorporated in engineered net shaping systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.