Abstract

Distributed Industrial Internet of Things (IIoT) has entirely revolutionized the industrial sector that varies from autonomous industrial processes to automation of processes without human intervention. However, threat hunting and intelligence is the most complex task in distributed IIoT. Besides, there exist no standard architectures for hunting micro services orchestration in distributed IIoT systems. The authors propose an efficient and self-learning autonomous multi-vector threat intelligence and detection mechanism to proactively defend IIoT systems/networks. Our proposed novel Cuda-empowered Convolutional LSTM2D (ConvLSTM2D) mechanism is highly scalable with self-optimizing capabilities to proficiently tackle diverse dynamic variants of emerging IIoT sophisticated threats and attacks. For a comprehensive evaluation, the authors employed a current state-of-the-art dataset with 21 million instances comprised of varying attack patterns and prevalent threat vectors. Moreover, the proposed technique is compared with our constructed contemporary Deep Learning (DL)-driven architectures and benchmark algorithms. The proposed mechanism outperforms in terms of detection accuracy with a trivial trade-off in speed efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.