Abstract

Angiogenic proteins (AGPs) play a primary role in the formation of new blood vessels from pre-existing ones. AGPs have diverse applications in cancer, including serving as biomarkers, guiding anti-angiogenic therapies, and aiding in tumor imaging. Understanding the role of AGPs in cardiovascular and neurodegenerative diseases is vital for developing new diagnostic tools and therapeutic approaches. Considering the significance of AGPs, in this research, we first time established a computational model using deep learning for identifying AGPs. First, we constructed a sequence-based dataset. Second, we explored features by designing a novel feature encoder, called position-specific scoring matrix-decomposition-discrete cosine transform (PSSM-DC-DCT) and existing descriptors including Dipeptide Deviation from Expected Mean (DDE) and bigram-position-specific scoring matrix (Bi-PSSM). Third, each feature set is fed into two-dimensional convolutional neural network (2D-CNN) and machine learning classifiers. Finally, the performance of each learning model is validated by 10-fold cross-validation (CV). The experimental results demonstrate that 2D-CNN with proposed novel feature descriptor achieved the highest success rate on both training and testing datasets. In addition to being an accurate predictor for identification of angiogenic proteins, our proposed method (Deep-AGP) might be fruitful in understanding cancer, cardiovascular, and neurodegenerative diseases, development of their novel therapeutic methods and drug designing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.