Abstract

The visual quality of magnetic resonance images (MRIs) is crucial for clinical diagnosis and scientific research. The main source of quality degradation is the noise generated during MRI acquisition. Although denoising MRI by deep learning methods shows great superiority compared with traditional methods, the deep learning methods reported to date in the literature cannot simultaneously leverage long-range and hierarchical information, and cannot adequately utilize the similarity in 3D MRI. In this paper, we address the two issues by proposing a deep adaptive blending network (DABN) characterized by a large receptive field residual dense block and an adaptive blending method. We first propose the large receptive field residual dense block that can capture long-range information and fuse hierarchical features simultaneously. Then we propose the adaptive blending method that produces denoised pixels by adaptively filtering 3D MRI, which explicitly utilizes the similarity in 3D MRI. Residual is also considered as a compensating item after adaptive filtering. The blending adaptive filter and residual are predicted by a network consisting of several large receptive field residual dense blocks. Experimental results show that the proposed DABN outperforms state-of-the-art denoising methods in both clinical and simulated MRI data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.