Abstract
Software-defined vehicular networks (SDVN) can help analyze and reconfigure networks. Massive data generation in autonomous vehicles can lead to issues in network configuration, routing, network characteristics, and system load factors. Load balancing in vehicle sensors helps reduce delays and improve resource utilization. In this paper, we propose a load balancing algorithm to map sensor data, vehicles and data centers performing tasks. A dynamic convergence method is proposed to help identify vehicle system load factors and compare their termination criteria. We also propose a packet-level intrusion detection model. After all load balancing, the model can track the attack on the network. The proposed model further combines the entropy-based active learning and the attention-based model to efficiently identify the attacks. Experiments are then conducted on the standard KDD data to validate the developed models with and without an attention-based active learning mechanism. Our experimental results show that the load balancing mechanism is able to achieve more performance gains than previous techniques. Moreover, the results show that the developed model can improve the decision boundary by using a pooling strategy and an entropy uncertainty measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.