Abstract

We present a modular framework for proving temporal properties of real-time systems, based on clocked transition systems and linear-time temporal logic. We show how deductive verification rules, verification diagrams, and automatic invariant generation can be used to establish properties of real-time systems in this framework. As an example, we present the mechanical verification of the generalized railroad crossing case study using the Stanford Temporal Prover, STeP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.