Abstract
To validate imputation methods used to infer plan-level deductibles and determine which enrollees are in high-deductible health plans (HDHPs) in administrative claims datasets. 2017 medical and pharmaceutical claims from OptumLabs Data Warehouse for US individuals <65 continuously enrolled in an employer-sponsored plan. Data include enrollee and plan characteristics, deductible spending, plan spending, and actual plan-level deductibles. We impute plan deductibles using four methods: (1) parametric prediction using individual-level spending; (2) parametric prediction with imputation and plan characteristics; (3) highest plan-specific mode of individual annual deductible spending; and (4) deductible spending at the 80th percentile among individuals meeting their deductible. We compare deductibles' levels and categories for imputed versus actual deductibles. Not applicable. All methods had a positive predictive value (PPV) for determining high- versus low-deductible plans of ≥87%; negative predictive values (NPV) were lower. The method imputing plan-specific deductible spending modes was most accurate and least computationally intensive (PPV: 95%; NPV: 91%). This method also best correlated with actual deductible levels; 69% of imputed deductibles were within $250 of the true deductible. In the absence of plan structure data, imputing plan-specific modes of individual annual deductible spending best correlates with true deductibles and best predicts enrollees in HDHPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.