Abstract

Dedicator of cytokinesis 2 (DOCK2) is a CDM family protein containing DOCK homology region (DHR)-1 and DHR-2, Src-homology 3 (SH3) domain, and C-terminal polybasic amino acid cluster. The CDM family consists of 11 mammalian members and is classified into four subfamilies, the DOCK-A, -B, -C, and -D. DOCK2 is a member of DOCK-A subfamily and an atypical guanine exchange factor regulating the loading of GTP to activate Rac. It is primarily found in peripheral blood, spleen, and thymus and mainly expressed in lymphocytes and macrophages of various organs. DOCK2 is also expressed in microglial in brain and is induced in neointima smooth muscle following vascular injury. Functionally, DOCK2 is involved in cell motility, polarity, adhesion, proliferation, and apoptosis. It is essential for lymphocyte migration and activation as well as neutrophil chemotaxis. DOCK2 also regulates the differentiation of natural killer T cells, type 2 T helper cells, and plasmacytoid dendritic cells. In addition, it is important for the growth of B cell lymphoma and prostate cancer cells. Deletion of DOCK2 enables long-term cardiac allograft survival. Moreover, DOCK2 is associated with the Alzheimer Disease, HIV development, and the early-onset of invasive infections. Recently, we found that DOCK2 plays a critical role in SMC phenotypic modulation and vascular remodeling. In this review, we will briefly summarize recent advancement of DOCK2 function. J. Cell. Physiol. 232: 1931-1940, 2017. © 2016 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.