Abstract

Mammals generate external coloration via dedicated pigment-producing cells but arrange pigment into patterns through mechanisms largely unknown. Here, using mice as models, we show that patterns ultimately emanate from dedicated pigment-receiving cells. These pigment recipients are epithelial cells that recruit melanocytes to their position in the skin and induce the transfer of melanin. We identify Foxn1 (a transcription factor) as an activator of this "pigment recipient phenotype" and Fgf2 (a growth factor and Foxn1 target) as a signal released by recipients. When Foxn1 - and thus dedicated recipients - are redistributed in the skin, new patterns of pigmentation develop, suggesting a mechanism for the evolution of coloration. We conclude that recipients provide a cutaneous template or blueprint that instructs melanocytes where to place pigment. As Foxn1 and Fgf2 also modulate epithelial growth and differentiation, the Foxn1 pathway should serve as a nexus coordinating cell division, differentiation, and pigmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.