Abstract

Scalar Timing Theory (an information-processing version of Scalar Expectancy Theory) and its evolution into the neurobiologically plausible Striatal Beat-Frequency (SBF) theory of interval timing are reviewed. These pacemaker/accumulator or oscillation/coincidence detection models are then integrated with the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture as dedicated timing modules that are able to make use of the memory and decision-making mechanisms contained in ACT-R. The different predictions made by the incorporation of these timing modules into ACT-R are discussed as well as the potential limitations. Novel implementations of the original SBF model that allow it to be incorporated into ACT-R in a more fundamental fashion than the earlier simulations of Scalar Timing Theory are also considered in conjunction with the proposed properties and neural correlates of the "internal clock".

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call