Abstract

To reveal the possible effects of decursin on viability, oxidative stress, and inflammatory response in lipopolysaccharide (LPS)-treated human bronchial epithelial cells-2B (BEAS-2B) and human pulmonary artery endothelial cells (HPAEC) cells, and revealed the potential mechanisms. LPS was used to induce acute lung injury (ALI) in normal human lung epithelial cells, including BEAS-2B and HPAEC cells. Cell viability and apoptosis in response to LPS and decursin in BEAS-2B and HPAEC cells were, respectively, evaluated by MTT colorimetric and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The oxidative stress and inflammatory response in LPS-treated BEAS-2B and HPAEC cells were detected by enzyme-linked-immunosorbent serologic assay. In addition, the role of decursin in nuclear -factor-kappa B (NF-κB) activation was analyzed by immunoblot and immunofluorescence assays. Our data revealed that decursin could alleviate the viability of LPS-induced BEAS-2B and HPAEC cells. Decursin could also reduce LPS-induced oxidative stress in BEAS-2B and HPAEC cells. In addition, it could reduce LPS-induced inflammation in BEAS-2B and HPAEC cells. Mechanically, decursin suppressed the activation of NF-κB pathway. Decursin suppressed NF-κB pathway, and therefore alleviated ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call