Abstract
Surfaces with micrometer-scale pillars have shown great potential in delaying the boiling crisis and enhancing the critical heat flux (CHF). However, physical mechanisms enabling this enhancement remain unclear. This knowledge gap is due to a lack of diagnostics that allow elucidating how micro-pillars affect thermal transport phenomena on the engineered surface. In this study, for the first time, we are able to measure time-dependent temperature and heat flux distributions on a boiling surface with engineered micro-pillars using infrared thermometry. Using these data, we reveal the presence of an intra-pillar liquid layer, created by the nucleation of bubbles and partially refilled by capillary effects. However, contrarily to conventional wisdom, the energy removed by the evaporation of this liquid cannot explain the observed CHF enhancement. Yet, predicting its dry out is the key to delaying the boiling crisis. We achieve this goal using simple analytic models and demonstrate that this process is driven by conduction effects in the boiling substrates and, importantly, in the intra-pillar liquid layer itself. Importantly, these effects also control the wicking flow rate and its penetration length. The boiling crisis occurs when, by coalescing, the size of the intra-pillar liquid layer becomes too large for the wicking flow to reach its innermost region. Our study reveals and quantifies unidentified physical aspects, key to the performance optimization of boiling surfaces for cooling applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.