Abstract

In marine osmoconformers, cells use organic osmolytes to maintain osmotic balance with seawater. High levels of urea are utilized in chondrichthyans (sharks, rays, skates, and chimaeras) for this purpose. Because of urea's perturbing nature, cells also accumulate counteracting methylamines, such as trimethylamine N-oxide (TMAO), at about a 2∶1 urea∶methylamine ratio, the most thermodynamically favorable mixture for protein stabilization, in shallow species. However, previous work on deep-sea teleosts (15 species) and chondrichthyans (three species) found an increase in muscle TMAO content and a decrease in urea content in chondrichthyans with depth. We hypothesized that TMAO counteracts protein destabilization resulting from hydrostatic pressure, as is demonstrated in vitro. Chondrichthyans are almost absent below 3,000 m, and we hypothesized that a limitation in urea excretion and/or TMAO retention might play a role. To test this, we measured the content of major organic osmolytes in white muscle of 13 chondrichthyan species caught with along-contour trawls at depths of 50-3,000 m; the deepest species caught was from 2,165 m. Urea and TMAO contents changed significantly with depth, with urea∶TMAO declining from 2.96 in the shallowest (50-90 m) groups to 0.67 in the deepest (1,911-2,165 m) groups. Urea content was 291-371 mmol/kg in the shallowest group and 170-189 mmol/kg in the deepest group, declining linearly with depth and showing no plateau. TMAO content was 85-168 mmol/kg in the shallowest group and 250-289 mmol/kg in the deepest groups. With data from a previous study for a skate at 2,850 m included, a second-order polynomial fit suggested a plateau at the greatest depths. When data for skates (Rajidae) were analyzed separately, a sigmoidal fit was suggested. Thus, the deepest chondrichthyans may be unable to accumulate sufficient TMAO to counteract pressure; however, deeper-living specimens are needed to fully test this hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.