Abstract
Abstract Available satellite data reveal a decreasing trend in surface chlorophyll (SChl) over the entire tropical ocean until 2020. Where contributions by internal variability and external forcing remain unclear. Here, state-of-the-art climate model simulations are analyzed to show that external forcing significantly contributes to the decreasing SChl trend. In contrast, internal variability plays a weak or even offsetting role. As for the underlying processes, anthropogenic greenhouse emissions lead to a remarkable reduction in SChl over the tropical oceans, whereas industrial aerosol load facilitates a considerable increase in SChl in the western tropical Pacific. In addition, the negative phase of the interdecadal Pacific variability during 1998–2020 contributes to an increase in SChl, while the impact from the Atlantic multidecadal variability is relatively weak in facilitating a decrease in SChl. Overall, these results imply that the impact of anthropogenic forcing has emerged as indicated in the tropical marine ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.