Abstract

The purpose of this scientific paper was to analyze the mathematical model built for the staged arrangement of the fuel combustion system and calculate the formation of nitrogen oxides throughout the boiler furnace height for the different distributions of thermal loadings along the full vertical extent of the combustion chamber. The obtained results enable the determination of the overall amount of nitrogen oxides formed in the boiler and it allows us to provide appropriate ecological indices for the boiler when regulating the air concentration in the burner rows. In practice, to suppress the formation of nitrogen oxides we often use such basic methods as low-toxic burners, staged fuel combustion, flue gas recirculation, etc. The analysis of the computations done allows us to draw a conclusion that the operation of the boiler with ecological indices that satisfy standard values of the European Directive 2010/75/EU is only possible for the load below 40 %. After reconstruction of the burner system and adjustment of the air supply system with the observation of above ecological norms the boiler power can be increased up to 80 % using the staged fuel burning with the ensurance of environmental performances during its operation. Computational and experimental data errors varied in the range of 8 % to 12 %. With the increase in the overall chemical incomplete combustion by 40 % to 60 % (q3) these losses are compensated by a decrease in absolute losses due to the boiler aggregate load and the losses through external walls (q5) due to an increase in the boiler power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call