Abstract

AbstractAluminum sulfate [Al2(SO4)3·14H2O] applications to poultry litter can greatly reduce P concentrations in runoff from fields fertilized with poultry litter, as well as decrease NH3 volatilization. The objective of this study was to evaluate metal runoff from plots fertilized with varying rates of alum‐treated and untreated (normal) poultry litter. Alum‐treated (10% alum by weight) and untreated litter was broadcast applied to small plots in tall fescue (Festuca arundinacea Schreb.). Litter application rates were 0, 2.24, 4.49, 6.73, and 8.98 Mg ha−1 (0, 1, 2, 3, and 4 tons acre−1). Rainfall simulators were used to produce two runoff events, immediately after litter application and 7 d later. Both concentrations and loads of water‐soluble metals increased linearly with litter application rates, regardless of litter type. Alum treatment reduced concentrations of As, Cu, Fe, and Zn, relative to untreated litter, whereas it increased Ca and Mg. Copper concentrations in runoff water from untreated litter were extremely high (up to 1 mg Cu L−1), indicating a potential water quality problem. Soluble Al, K, and Na concentrations were not significantly affected by the type of litter. Reductions in trace metal runoff due to alum appeared to be related to the concentration of soluble organic C (SOC), as well as the affinity of SOC for trace metals. Metal runoff from alum‐treated litter is less likely to cause environmental problems than untreated litter, since threats to the aquatic environment by Ca and Mg are far less than those posed by As, Cu, and Zn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.