Abstract

AbstractSlope‐stability models predict that steeper hillslopes require smaller hydrological triggers for shallow landslides to occur due to the added downslope pull of gravity, which should result in more frequent landslides and faster erosion. However, field observations indicate that landslide frequency does not consistently increase on steeper hillslopes. Here, we use measurements of 1,096 soil landslides in California and Switzerland, and a compilation of landslide geometries, to show that steeper hillslopes typically have thinner soils and that thin soils inhibit landslides due to enhanced roles of cohesion and boundary stresses. We find that the landscape‐averaged landslide erosion depth peaks near the threshold slope for instability, and it drops to half that value on hillslopes that are just 5° to 10° steeper. We propose that faster rates of soil creep on steeper slopes cause thin and more stable soils, which in turn reduces landslide erosion, despite the added pull of gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.