Abstract

Cr(III)-organic complexes are stably presented in tanning, electroplating, and other industrial wastewaters, and their safe and efficient removal remains a current challenge. Available oxidation processes can remove Cr(III) complexes but readily result in highly toxic Cr(VI) accumulation. Herein, negligible Cr(VI) accumulation was achieved during photo-oxidation of Cr(III) complexes using a simple strategy of decreasing dissolved oxygen (DO). At the DO concentration of 5.0 mg·L-1 or less, the in-process formation of intermediate Cr(VI) was totally abated by in situ formed reductive species, and total Cr was reduced from 9.0-11.0 mg·L-1 to below 1.0 mg·L-1. A complete curtailment of Cr(VI) was observed after 30-60 min at pH 6.0-9.0. Increasing Cr(III)-EDTA concentration and decreasing pH value facilitated the in situ reduction of intermediate Cr(VI). Based on the identification of intermediates and additional Cr(II) and quenching experiments, the possible key species involved in intermediate Cr(VI) reduction were the photogenerated Cr(II) and some C-centered radicals from Cr(III)-EDTA decomplexation, and the possible mechanisms of Cr(III)-EDTA decomplexation and intermediate Cr(VI) reduction were thus proposed. The process also showed efficient treatment on other Cr(III) complexes (citrate, oxalate, and tartrate) and realistic Cr(III) complexed wastewater. This study would provide an insignificant Cr(VI)-accumulated alternative for efficient and safe removal of Cr(III) complexes from contaminated water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call