Abstract

The acute stress response in vertebrates is a highly adaptive suite of physiological and behavioural mechanisms that promote survival in the face of deleterious stimuli from the environment. Facultative changes of physiology and behaviour are mediated through changes in circulating levels of glucocorticoids (corticosterone, cortisol) and their subsequent binding to the high-affinity mineralocorticoid receptor (MR) or the low-affinity glucocorticoid receptor (GR). Free-living male wild Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) display annual fluctuations in the stress response with marked attenuation during the transition from the pre-parental to the parental stage. We investigated whether this rapid reduction in the stress response is mediated through changes in MR and GR mRNA expression in the brain using in situ hybridisation. MR mRNA expression was found to be significantly lower in the hippocampus as the male birds became parental. No changes were observed in GR mRNA expression in the paraventricular nucleus (PVN) or preoptic area (POA) at this time. No significant correlations were found between initial capture levels of corticosterone and GR or MR mRNA expression. No differences were found in basal levels of corticosterone between pre-parental and parental in birds collected for in situ hybridisation. Stress response data revealed no difference at baseline but reductions in peak levels of corticosterone as birds became parental. These data suggest that changes in MR expression may be important for the regulation of the stress response or behavioural stress sensitivity with respect to promoting parental care and investment.

Highlights

  • IntroductionFree-living male wild Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii) display annual fluctuations in the stress response with marked attenuation during the transition from the pre-parental to the parental stage

  • Free-living male wild Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii) display annual fluctuations in the stress response with marked attenuation during the transition from the pre-parental to the parental stage. We investigated whether this rapid reduction in the stress response is mediated through changes in mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA expression in the brain using in situ hybridisation

  • There was no significant correlation between basal circulating levels of corticosterone and the average number of cells hybridised for GR (r = 0.15, P = 0.59) or MR (r = 0.01, P = 0.94)

Read more

Summary

Introduction

Free-living male wild Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii) display annual fluctuations in the stress response with marked attenuation during the transition from the pre-parental to the parental stage We investigated whether this rapid reduction in the stress response is mediated through changes in MR and GR mRNA expression in the brain using in situ hybridisation. Migratory songbirds depart from their wintering grounds and fly thousands of kilometres to their breeding grounds where they may encounter demanding conditions, such as intense storms, food shortages, predators and social disputes [1] During such times, songbirds are reliant upon the hypothalamic-pituitaryadrenal (HPA) axis and the production of the stress hormone, corticosterone, to regulate the behavioural and physiological changes that promote their survival. In Arctic-breeding songbirds, nest abandonment is promoted during intense prolonged snow storms as a result of chronically elevated levels of corticosterone [13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.