Abstract

Recent studies in the human visual cortex using diffusion-weighted functional magnetic resonance imaging (fMRI) have suggested that the apparent diffusion coefficient (ADC) decreases, in contrast to earlier studies that consistently reported ADC increases during neuronal activation. The changes, in either case, are hypothesized to provide the ability to improve the spatial specificity of fMRI over conventional blood-oxygenation-level-dependent (BOLD) methods. Most recently, the ADC decreases have been suggested as originating from transient cell swelling caused by either shrinkage of the extracellular space or some intracellular neuronal process that precedes the hemodynamic response. All of these studies have been conducted in humans and at lower magnetic fields, which can be limited by the signal-to-noise ratio (SNR). The low SNR can lead to significant partial-volume effects because of the lower spatial resolutions required to attain sufficient SNR in diffusion-weighted images. Human studies also have the potential confound of motion. At high magnetic fields and in animal model studies, these limitations are alleviated. At high fields, SNR increases, tissue signals are enhanced and signal changes inside the blood are significantly reduced compared to lower fields. In this work, we were able to measure a small but significant ADC decrease in tissue areas, in conjunction with brain activation in the cat visual cortex at 9.4 T when using highly diffusion-weighted images (b>1200 s/mm2) where intravascular effects are minimal. When using low b-values, delayed increases in the tissue ADC during activation were observed. No significant changes in ADC were observed in surface vessels for any diffusion weighting. Furthermore, we did not observe any temporal differences in the highly diffusion-weighted data compared to BOLD; however, although the changes may likely be vascular in nature, they are highly localized to the tissue areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.