Abstract

Abstract Atmospheric nitrogen (N) deposition has altered biogeochemical cycles and ecosystem functioning. As a key process involved in carbon and nutrient cycles in terrestrial ecosystems, litter decomposition is sensitive to external N inputs. However, it remains unclear how the interactions of ultraviolet (UV) radiation, soil biodiversity (bacteria, fungi and invertebrates) and conventional drivers (e.g. litter chemistry and microbial activities) regulate the responses of litter decomposition to continuous N inputs. Based on a multilevel N addition experimental platform, we conducted a 2‐year litter decomposition experiment to examine the relative importance of N‐induced changes in biotic and abiotic factors in mediating changes in the decomposition rates of four litter types (three representative species and their mixture) along an experimental N gradient in a Tibetan alpine steppe. Our results showed that litter decomposition rates exhibited a consistent decrease in response to N enrichment among all species and their mixture. The slowed decomposition rates with increasing N addition were associated with N‐induced reductions in UV radiation and soil bacterial diversity. An additional UV radiation manipulative experiment further confirmed that photodegradation had strong effects on plant litter decomposition at our study site. These results demonstrated that N‐induced declines in UV radiation and soil bacterial diversity inhibited litter decomposition, challenging the traditional view that changes in litter chemistry and microbial activities determine the responses of litter decomposition to external N inputs. Read the free Plain Language Summary for this article on the Journal blog.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.