Abstract

Staphylococcus epidermidis is a versatile agent, being both a commensal and a nosocomial pathogen usually with an opportunistic role in association with implanted foreign body materials. Pre-operative antiseptic preparation is an important strategy for reducing the risk of complications such as surgical site infection (SSI). Currently, the most widely used antiseptics are alcohols, quaternary ammonium compounds (QACs), and the bisbiguanide chlorhexidine. Occurrence of resistance to the latter agent has drawn increasing attention. The aim of this study was to investigate if decreased susceptibility to chlorhexidine among S. epidermidis was present in our setting, a Swedish university hospital. Staphylococcus epidermidis (n=143), retrospectively collected, were obtained from prosthetic joint infections (PJI) (n=61), post-operative infections after cardiac surgery (n=31), and the skin of the chest after routine disinfection prior to cardiac surgery (n=27). In addition, 24 commensal isolates were included. Minimum inhibitory concentration (MIC) of chlorhexidine was determined on Mueller Hinton agar plates supplemented with serial dilutions of chlorhexidine. Five QAC resistance genes, qacA/B, smr, qacH, qacJ, and qacG, were detected using PCR. Decreased susceptibility to chlorhexidine was found in 54% of PJI isolates, 68% of cardiac isolates, 21% of commensal isolates, and 7% of skin isolates from cardiac patients, respectively. The qacA/B gene was present in 62/143 isolates (43%), smr in 8/143 (6%), and qacH in one isolate (0.7%). The qacA/B gene was found in 52% of PJI isolates, 61% of cardiac isolates, 25% of commensal isolates, and 19% of the skin isolates. In conclusion, decreased susceptibility to chlorhexidine, as well as QAC resistance genes, were prevalent among S. epidermidis isolates associated with deep SSIs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.