Abstract

BackgroundRheumatoid arthritis (RA) is an autoimmune disease of which the pathogenetic mechanisms are not fully understood. Semaphorin3A (Sema3A) has an immune regulatory role. Neuropilin1 (NRP1), the primary receptor for Sema3A, is also a receptor for vascular endothelial growth factor 165 (VEGF165). It has been shown that Sema3A competitively antagonizes VEGF165 signaling. This study investigated whether Sema3A is expressed in synovial tissues, and is associated with disease activity and the histological features of synovial tissues from RA patients.MethodsHuman synovial tissues samples were obtained from RA and osteoarthritis (OA) patients. Disease activity of RA patients was calculated using the 28-joint Disease Activity Score based on C-reactive protein (DAS28-CRP). The histological features of RA synovial tissues were evaluated using Rooney’s inflammation scoring system. The localization of Sema3A, VEGF165 and NRP1 positive cells was immunohistochemically determined in synovial tissues. Expression levels of Sema3A, VEGF-A and NRP1 mRNA were determined using quantitative real-time polymerase chain reaction (qPCR).ResultsIn OA specimens, Sema3A, VEGF165 and NRP1 proteins were expressed in the synovial lining and inflammatory cells beneath the lining. Immunohistochemistry revealed the protein expression of Sema3A in synovial lining cells was decreased in RA tissues compared with OA samples. qPCR analysis demonstrated a significant reduction of Sema3A mRNA levels in RA synovial tissue samples than in OA and a significant correlation of the ratio of Sema3A/VEGF-A mRNA expression levels with DAS28-CRP (R = −0.449, p = 0.013). Sema3A mRNA levels also correlated with Rooney’s inflammation score, especially in perivascular infiltrates of lymphocytes (R = −0.506, p = 0.004), focal aggregates of lymphocytes (R = −0.501, p = 0.005) and diffuse infiltrates of lymphocytes (R = −0.536, p = 0.002).ConclusionsReduction of Sema3A expression in RA synovial tissues may contribute to pathogenesis of RA.

Highlights

  • Rheumatoid arthritis (RA) is an autoimmune disease of which the pathogenetic mechanisms are not fully understood

  • We found that Sema3A expression was decreased in RA synovial tissues when compared with osteoarthritis (OA) samples

  • Sema3A, vascular endothelial growth factor 165 (VEGF165), NRP1 and CD3 expression in OA and RA synovial tissues To investigate the involvement of Sema3A in RA pathogenesis, we performed immunohistochemical staining for Sema3A, VEGF165 and NRP1 expression in serial synovial serial sections from RA and OA patients

Read more

Summary

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease of which the pathogenetic mechanisms are not fully understood. Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by progressive joint destruction that accompanies the proliferation of synovial cells and blood vessels as well as invasion of inflammatory cells [1,2,3]. In. RA joints, immune cells such as T and B cells invade the hyperplastic synovial membranes [4]. Activated synovial T and B cells secrete various types of pro-inflammatory cytokines including interleukin-1 (IL-1), IL-17 and tumor necrosis factor-α (TNF-α). These cytokines induce the synthesis of matrix degrading enzymes in chondrocytes. Synovial fibroblasts produce matrix-degrading enzymes and can invade cartilage, leading to its destruction [3,4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call