Abstract
Contrary to what happens in open waters, where chlorophyll values and plankton dynamics can be predicted with a reasonable accuracy on an annual basis, biological parameters analyzed for coastal waters often show slight seasonality, and are exposed to numerous and convergent forcing factors that make it difficult to draw clear patterns. On top of this large natural variability, coastal locations subjected to urban sprawl suffer further human impact that may increase the unpredictability of plankton dynamics. Here we present the results of a multi-year time series of monthly samplings carried out in a coastal location by the city of Barcelona (NW Mediterranean) that is highly exposed to anthropogenic disturbances. Our data confirm the existence of complex patterns throughout the year. Freshwater inputs proved to be an important source of nutrients, yet the response of the planktonic organisms was vague and not systematic, contrary to the results of a previous study at a nearby coastal site less affected by human activities. The severity of anthropogenic disruptions was partially masked by the co-occurrence of natural physical phenomena, e.g., waste spills often come with downpours and large river discharge. In the NW Mediterranean, there seems to be a gradient of decreasing predictability on plankton dynamics from offshore to coastal waters with little human influence, where seasonality can be largely modified by local processes but the biological response is systematic and fairly predictable, and finally to urban coastal locations, where the seasonal background is diluted by numerous perturbations and there exists a variable pattern of biological responses. Our study underlines the importance of specific coastal processes in determining the structure and dynamics of the planktonic community, and the need to characterize coastal areas setting aside some of the assumptions valid for open ocean regions (e.g., (1) in the open ocean seasonality dominates annual nutrient fluxes, which are tightly linked to mixing and turbulence, while nutrient inputs at the coast can occur anytime throughout the year and may not be coincident with increased water-column mixing (Cloern, 1996; Cloern and Jassby, 2008); and (2) in coastal regions the concentration of nutrients during nutrient pulses can be greatly imbalanced with regard to Redfield elemental ratios (Jickells, 1998; Justić et al., 1995 and references therein)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.