Abstract

The role of B cells in resistance against Toxoplasma gondii was studied using B cell-deficient (muMT) mice. Following peroral infection with 10 cysts of the ME49 strain, all muMT mice survived the acute stage of the infection but died between 3 and 4 wk after infection. In contrast, all control mice were alive at 8 wk after infection. At the stage during which muMT animals succumbed to the infection, parasite replication and pathology were most evident in their brains; small numbers of tachyzoites were also detectable in their lungs. Significantly greater numbers of T. gondii cysts and areas of inflammation associated with tachyzoites were observed in brains of muMT than in control mice. Large areas of necrosis associated with numerous tachyzoites were observed only in brains of muMT mice. Anti-T. gondii IgG Abs were detected only in sera of control mice, whereas similar levels of IFN-gamma were detected in sera of both strains of mice. Amounts of mRNA for IFN-gamma, IL-10, and inducible NO synthase in the brain did not differ between infected muMT and control mice. Expression of mRNA for TNF-alpha was increased in brains of muMT mice. Administration of polyclonal rabbit anti-T. gondii IgG Ab prevented early mortality and pathology associated with tachyzoites in the brain in the infected muMT mice. These results indicate that B cells play an important role, most likely through their production of specific Abs, in resistance to persistent active (tachyzoite) infection with T. gondii in mice, especially in the brain and lung.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call