Abstract

E1 region replacement adenoviruses are replication defective and are propagated in cells providing adenovirus E1A and E1B proteins. Although they are being developed for antitumor therapies, the proliferative behaviors of these viruses in normal brain tissues or in brain tumors are unknown. To address this, freshly cultured cells from normal human brain and common brain tumors (astrocytomas and meningiomas) were infected using wild-type species C adenoviruses and adenoviruses missing E1A (H5dl312) or E1A plus E1B (H5dl434). Viral DNA replication, late viral protein expression, and production of infectious progeny were characterized. Wild-type adenoviruses grew efficiently in normal brain and brain tumor cells. In comparison, E1-deleted adenovirus DNA replication was delayed and lower in cells derived from normal brain tissues, meningiomas, and low-grade astrocytomas. However, in contrast, E1-deleted adenovirus DNA replication did not occur or was extremely low in cells derived from malignancy grade III and IV astrocytic tumors. Because wild-type adenoviruses infected and replicated in all cells, the malignancy grade-based differential E1-deleted adenovirus DNA replication was not explained by differential virus uptake. Infectious H5dl312 and H5dl434 production correlated with viral DNA replication. Compared with a 5-day average for wild-type infections, advanced cytopathology was noted approximately 4 weeks after H5dl312 or H5dl434 infection of meningioma, astrocytoma, and normal brain cells. Cytopathology was not observed after H5dl312 or H5dl434 infection of glioblastoma, anaplastic astrocytoma, and gliosarcoma cells. Because of this tumor grade-based differential growth, the E1-deleted adenoviruses may represent novel tools for studies of brain tumor malignancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call