Abstract

Chronic coronary heart disease (CHD) is correlated with an increased risk of cognitive impairment (CI), but the mechanisms underlying these changes remain unclear. The aim of the present study was to explore the potential changes in regional spontaneous brain activities and their association with CI, to explore the pathophysiological mechanisms underlying CI in patients with CHD. A total of 71 CHD patients and 73 matched healthy controls (HCs) were included in this study. Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were used to assess the participants' cognitive functions. Regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation(fALFF) values were calculated to determine regional spontaneous brain activity. Coronary artery calcium (CAC) score provides a measure of the total coronary plaque burden. Mediation analyses were performed to test whether CHD's effects on cognitive decline are mediated by decreased regional spontaneous brain activity. Patients with CHD had significantly lower MMSE and MoCA scores than the HCs. Compared with the HCs, the patients with CHD demonstrated significantly decreased ReHo and fALFF values in the bilateral medial superior frontal gyrus (SFGmed), left superior temporal gyrus (TPOsup) and left middle temporal gyrus (TPOmid). Impaired cognitive performance was positively correlated with decreased activities in the SFGmed. Mediation analyses revealed that the decreased regional spontaneous brain activity in the SFGmed played a critical role in the relationship between the increase in CAC score and the MoCA and MMSE scores. The abnormalities of spontaneous brain activity in SFGmed may provide insights into the neurological pathophysiology underlying CHD associated with cognitive dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call