Abstract

Normal human lymphoblasts starved for each of several essential, but not essential, amino acids had decreased DNA and RNA synthesis but no change in free intracellular purine nucleotides. The rates of purine nucleotide synthesis via the de novo and salvage pathways were measured by incorporating [14C]formate and [14C]hypoxanthine labels, respectively, into lymphoblasts starved for an amino acid or treated with a protein synthesis inhibitor. After 3 h of starvation, purine synthesis via the de novo pathway decreased 90% and via the salvage pathway decreased 60%. Cycloheximide and puromycin each reduced de novo synthesis by 96% and salvage synthesis by 72%. The decrease in purine synthesis de novo after removal of the amino acid was of first order kinetics and was fully and rapidly reversed by reconstitution with the amino acid. The synthesis of alpha-N-formylglycinamide ribonucleotide declined 97% after amino acid starvation; the synthesis of purines from 5-aminoimidazole-4-carboxamide riboside decreased 41%. The synthesis of guanylates decreased more than the synthesis of adenylates during amino acid starvation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.