Abstract

Zinc deficiency leads to pathological signs that are related to impaired function of plasma membrane proteins. The purpose of this study was to assess the effect of dietary zinc status on the sulfhydryl (SH) content of erythrocyte plasma membranes and erythrocyte function. Three experiments were performed. In the first, immature male rats were fed for 21 d either a low-zinc (<1.0 mg/kg) diet free choice (−ZnAL), an adequate-zinc (100 mg/kg) diet free choice (+ZnAL), or the adequate-zinc diet limited to the intake of −ZnAL pair-mates (+ZnPF). Tail blood was sampled to measure osmotic fragility and SH concentration of erythrocyte membrane proteins. The zinc-deficient rats were then repleted for 2 d and erythrocytes assayed for fragility and SH content. In the second experiment blood was sampled at 3-d intervals to determine the time course of change in fragility and SH concentration. In the third experiment the SH concentration of erythrocyte band 3 protein and the binding of zinc to isolated plasma membranes were measured. SH concentration decreased from approximately 75 nmol/mg protein to 68 nmol/mg protein during 21 d of depletion and returned to control level within 2 d of repletion. There was an inverse relationship between osmotic fragility and SH concentration of erythrocyte membrane proteins. Maximal decrease in SH occurred within 6 d of consuming the low-zinc diet. The SH content of band 3 protein isolated from deficient rats was also significantly lower than that of pair-fed controls (45 vs. 51 nmol/mg protein). The zinc-binding affinity of plasma membrane proteins tended to be decreased by zinc deficiency. In summary, low-zinc status lowers the plasma membrane SH concentration, and the decreased reducing potential is inversely related to osmotic fragility, and presumably, with impaired volume recovery of erythrocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call