Abstract

We reported earlier that an anti-inflammatory small peptide receptor-formyl peptide receptor-2 (FPR2) was significantly decreased in placentas from third trimester pregnancies complicated with fetal growth restriction (FGR), compared to placentas from uncomplicated control pregnancies, suggesting FPR2 may play a role in the development of FGR. The aim of this study is to investigate whether the actions of FPR2 alters placental growth process in humans. Accordingly, using small-for-gestation age (SGA) as a proxy for FGR, we hypothesize that FPR2 expression is decreased in first-trimester placentas of women who later manifest FGR, and contributes to aberrant trophoblast function and the development of FGR. Chorionic villus sampling (CVS) tissues were collected at 10–12 weeks gestation in 70 patients with singleton fetuses; surplus tissue was used. Real-time PCR and immunoassays were performed to quantitate FPR2 gene and protein expression. Silencing of FPR2 was performed in two independent, trophoblast-derived cell lines, HTR-8/SVneo and JEG-3 to investigate the functional consequences of FPR2 gene downregulation. FPR2 mRNA relative to 18S rRNA was significantly decreased in placentae from SGA-pregnancies (n = 28) compared with controls (n = 52) (p < 0.0001). Placental FPR2 protein was significantly decreased in SGA compared with control (n = 10 in each group, p < 0.05). Proliferative, migratory and invasive potential of the human placental-derived cell lines, HTR-8/SVneo and JEG-3 were significantly reduced in siFPR2 treated cells compared with siCONT control groups. Down-stream signaling molecules, STAT5B and SOCS3 were identified as target genes of FPR2 action in the trophoblast-derived cell lines and in SGA and control chorionic villous tissues. FPR2 is a novel regulator of key molecular pathways and functions in placental development, and its decreased expression in women destined to develop FGR reinforces a placental origin of SGA/FGR, and that it contributes to causing the development of SGA/FGR.

Highlights

  • Fetal growth restriction (FGR) complicates up to 10% of all human pregnancies and is a major cause of preterm birth and late pregnancy stillbirth, a leading cause of neonatal death and morbidity and a cause of lifelong neurological impairment including cerebral palsy and cardio-metabolic and vascular diseases in adulthood [1,2,3,4]

  • The level of expression of placental formyl peptide receptor-2 (FPR2) mRNA was significantly decreased in Small-for-gestation age (SGA)-affected pregnancies (n = 28) compared with those obtained from control pregnancies (n = 52; p < 0.001; Mann–Whitney U test)

  • The molecular basis of fetal growth and development is complex. The results of this current study show that FPR2 is expressed in early gestation chorionic villus samples and its expression is significantly reduced in pregnancies that later developed SGA

Read more

Summary

Introduction

Fetal growth restriction (FGR) complicates up to 10% of all human pregnancies and is a major cause of preterm birth and late pregnancy stillbirth, a leading cause of neonatal death and morbidity and a cause of lifelong neurological impairment including cerebral palsy and cardio-metabolic and vascular diseases in adulthood [1,2,3,4]. The underlying cause of FGR/SGA is unclear, but in the absence of a maternal (e.g., preeclampsia) and/or fetal (e.g., genetic) pathology, the origins of FGR/SGA predominantly lie within a functionally insufficient placenta, which manifests as inadequate utero-placental blood flow on ultrasound scan and maternal vascular mal-perfusion on placental histology [5]. The developmental abnormalities associated with fetal growth and the clinical symptoms associated with pathological pregnancies in late pregnancy are often associated with abnormal placental development early in gestation [6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.