Abstract

The cyclin-dependent kinase inhibitor p21, a major transcriptional target of the tumor suppressor p53, plays a critical role in cell cycle arrest in G1 and G2 after DNA damage. It was previously shown that in some human cell lines when S phase is arrested, p53 is transcriptionally impaired such that some p53 targets including p21 are only weakly induced. We show here that during S phase arrest proteasome-mediated turnover of p21 is significantly increased in a manner that is independent of p53. It is well established that p21 can interact both with cyclin-dependent kinase complexes and with proliferating cell nuclear antigen (PCNA). Interestingly, the scant amount of p21 detected during S phase block cannot fully saturate cyclin A-cyclin-dependent kinase 2 complexes and does not interact detectably with PCNA. Importantly, DNA elongation assays in isolated nuclei show that the C terminus of p21 containing the PCNA-binding domain effectively blocks this process. This implies that p21 down-regulation could be an essential requirement for efficient restart of DNA synthesis. In line with this, only cells expressing low levels of p21 immediately progress through the cell cycle upon release from S phase arrest, whereas the remaining few high p21 producing cells move much more slowly through S. Thus, p21 down-regulation is multiply determined and is required for the reversibility of the arrest in S phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.