Abstract

This study investigates the phosphorus (P) homeostasis in the process of an altered parathyroid hormone (PTH) action in the kidney of rats fed a high P diet. Four-week-old male Wistar strain rats were fed diets containing five different P levels (0.3, 0.6, 0.9, 1.2 and 1.5%) for 21 days. The serum PTH concentration and urinary excretion of P were elevated with increasing dietary P level. Compared to rats fed the 0.3% P diet, the serum calcium (Ca) concentration remained unchanged, while the serum 1,25(OH)(2)D(3) concentration and urinary excretion of cAMP were elevated with increasing dietary P level in rats fed the high P diets containing 0.6-0.9% P. On the other hand, a lower serum Ca concentration was observed in rats fed the high P diets containing 1.2% or greater P. The serum 1,25(OH)(2)D(3) concentration remained unchanged in rats fed the high P diets containing 1.2% or greater P, comparison with rats fed the 0.3% P diet. The urinary excretion of cAMP and PTH/PTH-related peptide (PTHrP) receptor and type II sodium-dependent phosphate transporter (NaPi-2) mRNA in the kidney were both decreased in rats fed the high P diets containing 1.2% or greater P. In conclusion, a high P diet with subsequent decrease in serum Ca concentration suppressed the PTH action in the kidney due to PTH/PTHrP receptor mRNA down-regulation. Furthermore, an increase in the urinary excretion of P might have been caused by decreased NaPi-2 mRNA expression without the effects of PTH and 1,25(OH)(2)D(3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.