Abstract

BackgroundNon-pharmaceutical interventions (NPIs), such as sanitary measures and travel restrictions, aimed at controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may affect the transmission dynamics of human respiratory syncytial virus (HRSV). We aimed to quantify the contribution of the sales of hand hygiene products and the number of international and domestic airline passenger arrivals on HRSV epidemic in Japan.MethodsThe monthly number of HRSV cases per sentinel site (HRSV activity) in 2020 was compared with the average of the corresponding period in the previous 6 years (from January 2014 to December 2020) using a monthly paired t-test. A generalized linear gamma regression model was used to regress the time-series of the monthly HRSV activity against NPI indicators, including sale of hand hygiene products and the number of domestic and international airline passengers, while controlling for meteorological conditions (monthly average temperature and relative humidity) and seasonal variations between years (2014–2020).ResultsThe average number of monthly HRSV case notifications in 2020 decreased by approximately 85% (p < 0.001) compared to those in the preceding 6 years (2014–2019). For every average ¥1 billion (approximately £680,000/$9,000,000) spent on hand hygiene products during the current month and 1 month before there was a 0.29% (p = 0.003) decrease in HRSV infections. An increase of average 1000 domestic and international airline passenger arrivals during the previous 1–2 months was associated with a 3.8 × 10− 4% (p < 0.001) and 1.2 × 10− 3% (p < 0.001) increase in the monthly number of HRSV infections, respectively.ConclusionsThis study suggests that there is an association between the decrease in the monthly number of HRSV cases and improved hygiene and sanitary measures and travel restrictions for COVID-19 in Japan, indicating that these public health interventions can contribute to the suppression of HRSV activity. These findings may help in public health policy and decision making.

Highlights

  • Non-pharmaceutical interventions (NPIs), such as sanitary measures and travel restrictions, aimed at controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may affect the transmission dynamics of human respiratory syncytial virus (HRSV)

  • National HRSV surveillance data The HRSV epidemiological data used in this study was obtained from the Infectious Disease Weekly Report (IDWR), which was sourced from the National Epidemiological Surveillance of Infectious Diseases (NESID) data published by the National Institute of Infectious Diseases, Japan (NIID) under the Ministry of Health, Labor and Welfare, Japan (MHLW) [22]

  • Long-term monthly seasonal variations in HRSV activity, NPI indicators, and meteorological conditions during 2014–2020 Figure 1a shows the monthly number of HRSV cases per sentinel site (HRSV activity) in Japan for the 7 epidemiologic years (2014–2020), illustrating the decrease in HRSV activity during the COVID-19 pandemic in 2020

Read more

Summary

Introduction

Non-pharmaceutical interventions (NPIs), such as sanitary measures and travel restrictions, aimed at controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may affect the transmission dynamics of human respiratory syncytial virus (HRSV). The human respiratory syncytial virus (HRSV) is an infection of the respiratory tract which causes clinically severe pneumonia in young children and bronchitis in infants [1]. Acute lower respiratory tract infections (ALRIs) caused by HRSV lead to the deaths of approximately 70,000 children under the age of 5 years annually, and with approximately 3.4 million people requiring hospitalization worldwide [2, 3]. The global burden of disease caused by HRSV has become more apparent, in infants and young children, and in the elderly (≥65 years); no effective vaccine has yet been developed, leaving a significant clinical impact [4, 5]. Japan experienced three COVID-19 epidemic peaks by October 2020 [9], an increase in cases was expected, and an effective approach to slow the spread of the virus was sought-after

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call