Abstract

Sea urchin CS histone variants are electrophoretically heterogeneous when analyzed in two dimensional polyacrylamide gels (2D-PAGE). Previous results suggested that this heterogeneity is due to the poly (ADP-ribosylation) of these proteins. Consequently, native CS histone variants were subjected to different treatments to remove the ADP-ribose moiety. The incubation in 1 M hydroxylamine was not effective in eliminating the polymers of ADP-ribose from CS variants, and the treatment with sodium hydroxide was deleterious to the proteins. In contrast, the ADP-ribose moiety was successfully removed from the CS variants by incubation with phosphodiesterase (PDE). To eliminate contamination of CS histone variants with PDE extract, the enzyme was covalently bound to Sepharose 4B prior to its utilization. Treatment of native CS histone variants with this immobilized phosphodiesterase removed around 85% of the total ADP-ribose moiety from these proteins. After S-PDE treatment the complex electrophoretic pattern of CS histone variants in 2-D PAGE decreases to five major fractions. From these results we conclude that the electrophoretic heterogeneity of native CS histone variants is mainly due to the extent to which five main CS histone variants are poly(ADP)-ribosylated).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.