Abstract

In this study, we focused on TRPV1 of African lungfish, Protopterus annectens. During drought at high temperature, African lungfish can survive by undergoing into aestivation in mud cocoons. Therefore, lungfish is considered to have some specialized heat-sensor, TRPV1, for heat tolerance. Further, lungfish which shares similarities with fishes and amphibians, is one of important species for investigating the fish-tetrapod transition. Since fish TRPV1 and tetrapod TRPV1 have some differences, character of lungfish TRPV1 attracts attention. Here, we first cloned TRPV1 paralogue from lungfish, Protopterus annectens (lfTRPV1) and determined the chemical and thermal sensitivities of lfTRPV1 by two-electrode voltage clamp method using frog oocytes. We detected activation of lfTRPV1 by acid and 2-APB, but capsaicin-induced activation was not observed. The sensitivity to acid of lfTRPV1 was similar to that of rat TRPV1 (rTRPV1), but the 2-APB sensitivity of lfTRPV1 was relatively weaker than rTRPV1. Heat stimulation up to 44 °C did not activate lfTRPV1 and the heat-activation was not detected even on acid condition of pH6. This dramatically decreased heat-sensitivity of TRPV1 may contribute the heat tolerance of African lungfish. Moreover, this might be the property of ancient tetrapod-type TRPV1 gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call