Abstract

This study aimed to verify the toxic effects of prenatal caffeine exposure (PCE) on the podocyte development in male offspring, and to explore the underlying intrauterine programming mechanisms. The pregnant rats were administered with caffeine (30 to 120 mg/kg⋅d) during gestational day (GD) 9 to 20. The male fetus on GD20 and the offspring at postnatal week (PW) 6 and PW28 were sacrificed. The results indicated that PCE caused ultrastructural abnormalities on podocyte, and inhibited the expression of podocyte marker genes such as Nephrin, Wilms tumor 1 (WT1), the histone 3 lysine 9 acetylation (H3K9ac) level in the Kruppel-like factor 4 (KLF4) promoter and its expression in the male offspring from GD20 to PW28. Meanwhile, the expression of glucocorticoid receptor (GR) and histone deacetylase 7 (HDAC7) in the fetus were increased by PCE. In vitro, corticosterone increased GR and HDAC7 whereas reduced the H3K9ac level of KLF4 and KLF4/Nephrin expression. KLF4 over-expression reversed the reduction of Nephrin expression, knockdown of HDAC7 and GR antagonist RU486 partially reversed the inhibitory effects of corticosterone on H3K9ac level and KLF4 expression. In conclusion, PCE caused podocyte developmental toxicity in male offspring, which was associated with corticosterone-induced low-functional programming of KLF4 through GR/HDAC7/H3K9ac pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.