Abstract

SummaryObjectiveBenign epilepsy with centrotemporal spikes (BECTS, also known as Rolandic epilepsy) is a common epilepsy syndrome that is associated with literacy and language impairments. The neural mechanisms of the syndrome are not known. The primary objective of this study was to test the hypothesis that functional connectivity within the language network is decreased in children with BECTS. We also tested the hypothesis that siblings of children with BECTS have similar abnormalities.MethodsEcho planar magnetic resonance (MR) imaging data were acquired from 25 children with BECTS, 12 siblings, and 20 healthy controls, at rest. After preprocessing with particular attention to intrascan motion, the mean signal was extracted from each of 90 regions of interest. Sparse, undirected graphs were constructed from adjacency matrices consisting of Spearman's rank correlation coefficients. Global and nodal graph metrics and subnetwork and pairwise connectivity were compared between groups.ResultsThere were no significant differences in graph metrics between groups. Children with BECTS had decreased functional connectivity relative to controls within a four‐node subnetwork, which consisted of the left inferior frontal gyrus, the left superior frontal gyrus, the left supramarginal gyrus, and the right inferior parietal lobe (p = 0.04). A similar but nonsignificant decrease was also observed for the siblings. The BECTS groups had significant increases in connectivity within a five‐node, five‐edge frontal subnetwork.SignificanceThe results provide further evidence of decreased functional connectivity between key mediators of speech processing, language, and reading in children with BECTS. We hypothesize that these decreases reflect delayed lateralization of the language network and contribute to specific cognitive impairments.

Highlights

  • Benign epilepsy with centrotemporal spikes (BECTS, known as Rolandic epilepsy) is a common epilepsy syndrome that is associated with literacy and language impairments

  • The present study shows that participants with BECTS have a significant decrease in functional connectivity relative to controls within a subnetwork that included, at a minimum, the left inferior frontal gyrus, the left supramarginal gyrus, and the right inferior parietal lobe

  • Longitudinal studies are required to delineate the sequence of functional connectivity alterations in BECTS and their relationship to language lateralization

Read more

Summary

Introduction

Benign epilepsy with centrotemporal spikes (BECTS, known as Rolandic epilepsy) is a common epilepsy syndrome that is associated with literacy and language impairments. The primary objective of this study was to test the hypothesis that functional connectivity within the language network is decreased in children with BECTS. Children with BECTS had decreased functional connectivity relative to controls within a four-node subnetwork, which consisted of the left inferior frontal gyrus, the left superior frontal gyrus, the left supramarginal gyrus, and the right inferior parietal lobe (p = 0.04). Significance: The results provide further evidence of decreased functional connectivity between key mediators of speech processing, language, and reading in children with BECTS. We hypothesize that these decreases reflect delayed lateralization of the language network and contribute to specific cognitive impairments.

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.