Abstract

In nerve terminals, vesicular transporters pack neurotransmitters into synaptic vesicles, which is an essential prerequisite for transmitter release. To date, three distinct families of vesicular transporters have been identified which are specific for (a) excitatory amino acids (glutamate and aspartate), (b) inhibitory amino acids (GABA and glycine) and (c) acetylcholine and monoamines. The present study evaluated the effect of transient focal cerebral ischemia on the expression of these vesicular transporters in adult rat brain. Ischemia was induced by a 1 h transient middle cerebral artery occlusion (MCAO) in spontaneously hypertensive rats. At various reperfusion periods (3–72 h), mRNA levels of the vesicular transporters were estimated in the contralateral and the ipsilateral cerebral cortex by real-time PCR analysis. Following transient focal ischemia, mRNA expression of the vesicular GABA transporter (VGAT) decreased significantly by 3 h of reperfusion and remained at a significantly lower level than sham until at least 72 h of reperfusion. Western blotting showed a significant decrease in the VGAT immunoreactive protein levels in the ipsilateral cortex of rats subjected to focal ischemia and 24 h reperfusion. Immunohistochemistry demonstrated many VGAT immunopositive puncta in the contralateral cortex, which were significantly decreased in the ipsilateral cortex at 24 h reperfusion. Focal ischemia had no effect on the mRNA levels of the vesicular transporters specific for glutamate/aspartate, acetylcholine and monoamines at either 6 h or 24 h of reperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.