Abstract

This study suggests that speckle-type POZ protein (SPOP) may be a tumor suppressor gene and its prognostic value in human glioma. Real-time quantitative RT-PCR (qRT‑PCR), western blotting, and immunohistochemical staining were used to examine SPOP expression in glioma tissues and normal brain (NB) tissues. The relationships between the SPOP expression levels, the clinicopathological factors, and patient survival were investigated. The molecular mechanisms of SPOP expression and its effects on cell viability, migration and invasion were also explored by MTT assay, wound-healing assays and Transwell assay. SPOP mRNA and protein levels were downregulated in glioma tissues compared to NB. Immunohistochemical staining results showed low expression in 62.2% (61/98) of glioma samples, while high expression in 75% (9/12) of NB samples, and the difference was statistically significant (P=0.014). In addition, decreased SPOP was associated disease progression in glioma samples, the expression level of SPOP was positively correlated with mean tumor diameter (MTD) (P=0.021) and the status of tumor grade and histological type (WHO I, II, III and IV) (P=0.032) in glioma patients. Additionally, the overall survival of patients with low SPOP expression was significantly worse than that of SPOP-high patients (P=0.001). In vitro overexpression of SPOP markedly inhibited cell viability, migration and invasion invitro. These findings suggest that SPOP has potential use as novel biomarker of glioma and may serve as an independent predictive factor for prognosis of glioma patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call