Abstract

Huntington disease is caused by polyglutamine (polyQ) expansion in huntingtin. Selective and progressive neuronal loss is observed in the striatum and cerebral cortex in Huntington disease. We have addressed whether expanded polyQ aggregates appear in regions of the brain apart from the striatum and cortex and whether there is a correlation between expanded polyQ aggregate formation and dysregulated transcription. We generated transgenic mouse lines expressing mutant truncated N-terminal huntingtin (expanded polyQ) fused with enhanced green fluorescent protein (EGFP) and carried out a high-density oligonucleotide array analysis using mRNA extracted from the cerebrum, followed by TaqMan RT-PCR and in situ hybridization. The transgenic mice formed expanded polyQ-EGFP fluorescent aggregates and this system allowed us to directly visualize expanded polyQ aggregates in various regions of the brain without performing immunohistochemical studies. We show here that polyQ-EGFP aggregates were intense in the hypothalamus, where the expression of six hypothalamic neuropeptide mRNAs, such as oxytocin, vasopressin and cocaine-amphetamine-regulated transcript, was down-regulated in the transgenic mouse brain without observing a significant loss of hypothalamic neurons. These results indicate that the hypothalamus is susceptible to aggregate formation in these mice and this may result in the down-regulation of specific genes in this region of the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.