Abstract

The prevalence of binge drinking has risen in recent years. It is associated with a range of neurocognitive deficits among adolescents and young emerging adults who are especially vulnerable to alcohol use. Attention is an essential dimension of executive functioning and attentional disturbances may be associated with hazardous drinking. The aim of the study was to examine the oscillatory neural dynamics of attentional control during visual target detection in emerging young adults as a function of binge drinking. In total, 51 first-year university students (18 ± 0.6 years) were assigned to light drinking ( n = 26), and binge drinking ( n = 25) groups based on their alcohol consumption patterns. A high-density magnetoencephalography signal was combined with structural magnetic resonance imaging in an anatomically constrained magnetoencephalography model to estimate event-related source power in a theta (4-7 Hz) frequency band. Phase-locked co-oscillations were further estimated between the principally activated regions during task performance. Overall, the greatest event-related theta power was elicited by targets in the right inferior frontal cortex and it correlated with performance accuracy and selective attention scores. Binge drinkers exhibited lower theta power and dysregulated oscillatory synchrony to targets in the right inferior frontal cortex, which correlated with higher levels of alcohol consumption. These results confirm that a highly interactive network in the right inferior frontal cortex subserves attentional control, revealing the importance of theta oscillations and neural synchrony for attentional capture and contextual maintenance. Attenuation of theta power and synchronous interactions in binge drinkers may indicate early stages of suboptimal integrative processing in young, highly functioning binge drinkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call