Abstract

Mild cognitive impairment (MCI) refers to a measurable deficit in cognition in the absence of dementia or impairment in activities of daily living. Working memory impairment is among the earliest signs of MCI. Oscillatory analysis of working memory might be a potential tool for identifying patients at increased risk of developing dementia. Our study aimed to assess the temporospatial pattern of spectral differences during working memory maintenance between MCI patients and healthy controls and to compare the sources of oscillatory activity between the two groups. Event-related spectral perturbation of 17 MCI patients and 21 healthy control participants was studied with 128-channel EEG during the Sternberg working memory task. Source localization was performed by using the eLORETA software. Among the participants, 13 MCI and 15 control participants underwent a structural brain MRI examination. Event-related synchronization (ERS) in the alpha and beta frequency band was significantly lower in MCI patients compared to healthy control participants during retention. Both study groups showed significant memory load-related enhancement in both frequency band. In the MCI group, source localization revealed significantly attenuated beta oscillatory activity in the inferior and middle temporal gyrus, in the fusiform gyrus, and in the cuneus. Beta ERS correlated significantly with the size of the hippocampus, entorhinal cortex, and parahippocampal gyrus. During the retention period, MCI is characterized by decreased alpha and beta ERS compared to controls indicating early impairment in neural networks serving working memory maintenance. The assessment of electrophysiological changes in the beta frequency range may provide a useful diagnostic tool for the early detection of cognitive impairment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.