Abstract

Delirium is linked to brain abnormalities, yet the role of the glymphatic system is not well understood. This study aims to examine alterations in brain physiology in delirium by using diffusion-tensor imaging (DTI) to assess water diffusion along the perivascular space (ALPS) and to explore its correlation with clinical symptoms. We examined 15 patients with delirium and 15 healthy controls, measuring water diffusion metrics along the x-, y-, and z-axes in both projection and association fibers to determine the DTI-ALPS index. We used a general linear model, adjusted for age and sex, to compare the DTI-ALPS index between groups. We also investigated the relationship between the DTI-ALPS index and clinical symptoms using partial correlations. Patients with delirium exhibited significantly lower DTI-ALPS indices compared to healthy controls (1.25 ± 0.15 vs. 1.38 ± 0.10, t = 2.903, p = 0.007; 1.27 ± 0.16 vs. 1.39 ± 0.08, 1.22 ± 0.16 vs. 1.37 ± 0.14, t = 2.617, p = 0.014; t = 2.719, p = 0.011; respectively). However, there was no significant correlation between the DTI-ALPS index and clinical symptoms. Our findings indicate a decreased DTI-ALPS index in patients with delirium, suggesting potential alterations in brain physiology that may contribute to the pathophysiology of delirium. This study provides new insights into the mechanisms underlying delirium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.