Abstract

Understanding the influence of immune effector mechanisms on CMV infection of the CNS may facilitate the development of immunotherapies for viral encephalitis. Using cultures of highly purified, fully permissive primary human astrocytes, proinflammatory cytokines, but not antiinflammatory cytokines or beta-chemokines, were found to inhibit CMV expression, DNA synthesis, and replication. Treatment with certain proinflammatory cytokines 24 h before CMV infection markedly suppressed viral expression in astrocytes. TNF-alpha, IL-1beta, and IFN-gamma all inhibited CMV expression (70 +/- 4.2%, 65 +/- 3.4%, and 82 +/- 3.6% inhibition of viral expression, respectively, n = 5). In contrast, no viral suppression was observed following IL-6 treatment. Suppressive activity was dependent on the addition of cytokines before CMV infection. Cytokine pretreatment did not affect CMV entry into primary astrocytes, and the observed cytokine-induced suppressive activity was not affected by the NO synthase inhibitor NG-monomethyl- -arginine (NGMA). Instead, the suppressive effect appeared to be mediated through a mechanism involving inhibition of CMV major immediate early promoter activity. These results support the hypothesis that proinflammatory cytokines possess anti-CMV activity in brain cells and may lead to new interventions for CMV encephalitis based upon immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.