Abstract

Objective. – Sepsis is a potentially life-threatening medical condition induced by viral, bacterial or fungal infection, which is characterized by systemic inflammation, hypotension and vasodilation that can lead to cardiovascular collapse. Increased activity of elastases, enzymes which degrade the extracellular matrix components including elastin, has been demonstrated in plasma of septic patients. Since elastin peptides (EP), by binding to an elastin–laminin receptor on vascular endothelial and smooth muscle cells, induce dose-dependent vasodilation, we hypothesized that elevated circulating EP could contribute to the vasodilation that occurs in septic patients. Materials and methods. – Blood for measurement of EP was collected from not-septic and septic patients admitted to the intensive care unit (ICU), as well as from healthy subjects. Plasma EP concentrations were measured using a competitive ELISA technique. Results. – The plasma EP level in the septic patients was approximately half that of the not-septic patients and the healthy controls, with similar EP levels in the latter two groups. There was no apparent association between EP levels and age or gender in any of the groups. Conclusions. – Plasma EP levels were actually decreased in septic patients, possibly indicating that the balance between EP production vs. elimination favors elimination. This result further suggests that circulating EP may not be important in the development of the vasodilation and hypotension that occurs in septic shock. Alternatively, however, increased degradation of EP by elastase or other enzymes could lead to the appearance of biologically active EP, which may not be recognized by the ELISA assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.