Abstract

The abnormal control of parathyroid hormone secretion in chronic renal failure is attributed, in part, to down-regulation of the calcium-sensing receptor (CaR) in hyperplastic parathyroid tissue. The cause of this down-regulation is unknown. Here we examined the roles of uremia and parathyroid hyperplasia on parathyroid gland (PTG) CaR expression in the rat model of renal failure. Rats made uremic by 5/6 nephrectomy were maintained for one month on diets containing 0.2% P (low phosphate), 0.5% P (normal phosphate) or 1.2% P (high phosphate); intact rats (controls) were maintained on the normal-phosphate diet. CaR mRNA was reduced only in uremic rats fed the high-phosphate diet (55% less than in controls, P < 0.05). Immunohistochemical staining revealed decreased CaR protein expression in uremic high-phosphate rat PTG compared with controls (41% decrease as determined by computer-assisted quantitation, P < 0.01). PTG size was increased in uremic rats fed the high-phosphate diet compared with controls (2.77 +/- 0.95 vs. 0.77 +/- 0.16 microgram/g body wt, P < 0.0001). There was no increase in PTG size in uremic rats fed the low-phosphate and normal-phosphate diets (0.92 +/- 0.31 and 1.01 +/- 0.31 micrograms/g) compared with controls (0.77 +/- 0.16 microgram/g body wt). Immunohistochemical staining for proliferating cell nuclear antigen in hyperplastic PTG from uremic rats showed that CaR was decreased primarily in areas of active cell proliferation. These results suggest that CaR down-regulation cannot be attributed to uremia per se, but rather, is associated with parathyroid cell proliferation. Furthermore, dietary phosphate restriction prevents both the parathyroid hyperplasia and decreased CaR expression in renal failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.