Abstract

Grafting is an effective horticultural method to reduce Cd accumulation in crops. However, the mechanism of grafting inducing the decrease in Cd content in scions remains unclear. This study evaluated the effect of grafting on fruit quality, yield, and Cd content of Solanum melongena, and explored the potential mechanism of grafting reducing Cd content in scions. In the low Cd-contaminated soil, compared with un-grafted (UG) and self-grafted plants (SG), the fruit yield of inter-grafted plants (EG) increased by 38 %, and the fruit quality was not markedly affected. In EG, the decrease in total S and Cd content was not related to organic acids and thiol compounds. The decrease in total S and Cd content in EG leaves and fruits was closely related to the synthesis and transportation of glucosinolates (GSL). The genes encoding GSL synthesis in leaves, such as basic helix-loop-helix, myelocytomatosis proteins, acetyl-CoA, cytochrome P450, and glutathione S-transferases, were significantly downregulated. In EG leaves, the contents of five of the eight amino acids involved in GSL synthesis decreased significantly (P < 0.05). Notably, total GSL in EG stems, leaves, and fruits had a significant linear correlation with total S and Cd. In summary, the decrease in total S and Cd content in scions caused by grafting is closely related to GSL. Our findings provide a theoretical basis for the safe use of Cd-contaminated soil, exploring the long-distance transport of Cd in plants and cultivating crops with low Cd accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call