Abstract

Methylmercury (MeHg), derived via inorganic mercury (Hg(II)) methylation by anaerobic microorganisms, is a neurotoxic contaminant causing concern worldwide. Establishing how to reduce Hg(II) methylation and MeHg bioavailability is essential for effective control of Hg pollution. Iron sulfide nanoparticles (FeSNP) is a promising passivator for Hg(II) methylation. However, its effect on the fate of MeHg in aquatic systems remains poorly understood. This study investigated the effect of FeSNP on Hg(II) bioavailability, MeHg production and bioavailability in aquatic environments. Results demonstrated that FeSNP rapidly sorbed Hg(II) and MeHg, with sorption affected by pH, chloride ion and dissolved organic matter. Hg-specific biosensor analysis showed that Hg(II) sorbed onto FeSNP significantly reduced its bioavailability to microorganisms. Double stable isotope (199Hg(II) and Me201Hg) addition revealed that FeSNP significantly inhibited MeHg production in anaerobic sediments. Furthermore, synthetic gut juice extraction suggested that FeSNP decrease concentrations of bioavailable MeHg and Hg(II), reducing their integration into food webs. However, the sorbed MeHg and Hg(II) in sediments can be released after FeSNP oxidation, potentially enhancing the risk of exposure to aquatic organisms. Overall, these findings increase our understanding of Hg transformation and exposure risks in aquatic systems, providing valuable information for the development of in situ Hg remediation systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call